Компрессоры, различные по давлению, производительности, сжимаемой среде, условиям окружающей среды, имеют большое разнообразие конструкций и типов. Компрессоры классифицируются по ряду характерных признаков.
По принципу действия компрессоры подразделяются на объемные и лопастные. Под принципом действия понимают основную особенность процесса повышения давления, зависящую от конструкции компрессора (рис. 1.1).
Объемный компрессор— это машина, в которой процесс сжатия происходит в рабочих камерах, изменяющих свой объем периодически, попеременно сообщающихся с входом и выходом компрессора. Объемные машины по геометрической форме рабочих органов и способу изменения объема рабочих камер можно разделить на поршневые и роторные компрессоры.
Поршневые компрессоры могут быть одностороннего или двухстороннего действия, крейцкопфные и бескрейцкопфные, смазываемые и без применения смазки (сухого трения). На рис. 1.2 показаны различные конструктивные схемы поршневых компрессоров.
В поршневом компрессоре сжатие газа осуществляется перемещением поршня, совершающего возвратно-поступательное движение. Возвратно-поступательное движение рабочих органов имеют также свободно-поршневые и мембранные компрессоры. На рис. 1.3 дана схема мембранного компрессора.
В свободно-поршневом компрессоре передача движения от двигателя к сжимаемому элементу осуществляется без механизма передачи движения. В мембранном компрессоре уменьшение объема газа осуществляется перемещением сжимающего элемента — ротора, совершающего вращательное или кача-тельное движение.
К объемным машинам с вращающим сжимающим элементом (роторным машинам) относятся: винтовые, ротационно-пластинчатые, жидкостно-кольцевые и другие конструкции компрессорных машин (рис. 1.4).
Лопастной компрессор — машина динамического действия, в которой сжатие газа происходит в результате взаимодействия потока с вращающейся и неподвижной решетками лопастей. Характерной особенностью лопастных машин является отсутствие пульсации развиваемого ими давления. К лопастным компрессорам относятся радиальные (центробежные), радиальноосевые (диагональные), осевые (рис. 1.5).
В центробежном компрессоре поток движется в основном от центра к периферии. В осевом компрессоре поток газа движется вдоль оси ротора.
По назначению компрессоры классифицируются по отрасли производства, для которых они предназначены (химические, энергетические, общего назначения и т. д.), по роду сжимаемого газа (воздушный, кислородный, хлорный, азотный, гелиевый и т. д.), по непосредственному назначению (пускового воздуха, тормозные и т. д.).
По конечному давлению различают:
Компрессоры называются дожимающими, если давление всасываемого газа существенно превышает атмосферное. Производительность компрессоров обычно выражают в единицах объема газа, приведенного к нормальным условиям.
По способу отвода теплоты — с водяным и воздушным охлаждением.
По типу приводного двигателя — с приводом от электродвигателя, двигателя внутреннего сгорания, паровой или газовой турбины.
Для удобства монтажа и уменьшения габаритов компрессорной установки применяются электродвигатели, ротор которых является валом компрессора (моноблочный принцип).
Расчет, конструирование и эксплуатация компрессора ведутся с учетом свойств газа, для сжатия которого предназначен данный компрессор.
Свойства сжимаемого газа определяют размеры и конструкцию главных узлов и деталей компрессора; например, при сжатии пожароопасных газов (кислород, водород, углеводородные газы и др.) необходимо обеспечение повышенной герметичности компрессора и взрывобезопасности двигателя, систем защиты и управления. При сжатии газов> отличающихся токсичностью (оксид углерода, хлор и др.) и повышенной текучестью (гелий), главное требование — герметичность компрессора. При сжатии газов с коррозионными свойствами (сероводород, хлор и др.) необходимо применение специальных материалов для деталей газового такта компрессора.
Некоторые газы активно вступают в химическую реакцию с минеральным маслом (например, кислород), растворяют минеральное масло, или смывают его с трущихся поверхностей узлов компрессора (например, углеводородные газы и их смеси), поэтому необходимо применение специальной смазки или выполнение конструкции компрессора, не требующей смазки.
Свойства часто встречающихся газов приведены в приложении.
Наибольшее распространение в криогенной технике получили воздушные, кислородные, азотоводородные, водородные, гелиевые компрессоры. Поэтому укажем состав воздуха, содержащий основные газы, используемые в криотехнике (табл. 1.1).
Газ | Массовая доля, % | Объемная доля, % |
Азот | 75,55 | 78,1 |
Кислород | 23,1 | 20,93 |
Аргон | 1,1 | 0,94 |
Углекислый газ | 0,05 | 0,03 |
Водород, неон, гелий, криптон, ксенон | Остальное | Остальное |
Воздух считается чистым, если содержание пыли в нем менее 25 мг/м³. Воздух содержит пары воды, количество которых определяется его температурой и относительной влажностью. Давление атмосферного воздуха зависит от высоты над уровнем моря и колебаний барометрического давления, достигающих 2,5%. На высоте 1000 м, например, атмосферное давление ниже давления на уровне моря приблизительно на 13,5 %.