Движение газового потока в проточной части лопастных компрессоров имеет сложный пространственный характер. Параметры потока (скорость, давление, плотность, температура) в различных сечениях имеют разные значения и зависят от времени. Обычно же с целью упрощения течение газа в компрессоре принимается установившимся, т. е. независимым от времени. Для вывода основных уравнений движения газа в лопастном компрессоре исходят из представления элементарной струйки газа, у которой в любом поперечном сечении изменением вышеназванных параметров можно пренебречь.
В теории лопастных компрессоров большое значение имеют уравнения постоянства массового расхода (уравнение неразрывности), количества движения и момента количества движения и уравнение энергии в абсолютном и относительном движении.
Фундаментальная теорема механики — импульс внешней силы равен изменению количества движения материальной системы — применительно к потоку газа в каналах лопастной машины может быть выражена уравнением,
где Р — сила, действующая со стороны потока на лопасть; G — массовый секундный расход; сть стг — средние значения скоростей в начальном и конечном сечениях.
где М — момент, прилагаемый к массе газа G, необходимый для увеличения момента количества движения; r1, r2—соответственно радиусы начального и конечного сечений потока; с — проекции абсолютных скоростей в этих сечениях на направление окружных скоростей.
Механический принцип рабочих процессов лопастных динамических машин, подающих непрерывную среду (жидкость или газ), одинаков: лопасти, взаимодействуя с потоком, повышают его энергию. Однако жидкость почти несжимаема, а газ сжимаем существенно, и его плотность определяется зависимостью от давления и температуры. Это обстоятельство, а также большое различие в процессах трения жидкостей и газов приводят к существенному различию физических процессов лопастных машин для сжимаемых и несжимаемых сред. В рабочих процессах лопастных компрессоров имеют место термодинамические явления.
Из уравнения следует, что энергия, сообщенная газу, расходуется на сжатие и изменение кинетической энергии газа. Член представляет собой статический напор лопастного компрессора. При течении газа в неподвижном канале, где энергия газу не сообщается и потери пренебрежимо малы.
Уравнение (4.6) называют уравнением Бернулли для установившегося абсолютного движения газа в неподвижном канале. Каналы проточной части лопастного компрессора имеют специфическую форму; некоторые из них, например межлопастные каналы рабочего колеса, вращаются.
Поэтому использование уравнений теоретической газомеханикидля расчета потоков в каналах лопастного компрессора должно проводиться с учетом их особенностей и в некоторых случаях с применением опытных коэффициентов.
Все лопасти рабочего колеса центробежного компрессора можно рассматривать как круговую решетку, вращающуюся с угловой скоростью. До настоящего времени газодинамика потока в таких решетках с конечным шагом лопастей недостаточно изучена. Поэтому применяются упрощенные схемы, рассматривающие течение потока в отдельных межлопастных каналах, образованных соседними лопастями.
Рассмотрим движение идеального газа во вращающемся канале произвольной формы (рис. 4.1). При постоянной ω относительное движение в межлопастных каналах можно полагать установившимся.
Абсолютная скорость с в таком потоке представляет собой векторную сумму относительной W (относительно стенок канала) и переносной (вращение вокруг оси колеса) скорости. Окружная (переносная) скорость на произвольном радиусе равна u = rw. W определяют по объемному расходу q через канал и геометрическим размерам живого сечения канала.
Результирующую абсолютную скорость с определяют построением параллелограмма скоростей. Как будет указано ниже, энергетические качества рабочего колеса определяются главным образом кинематическими соотношениями на входе 1 и выходе 2 рабочего колеса. Обычно вместо параллелограммов строят треугольники скоростей (рис. 4.2).
Составляющая абсолютной скорости сы характеризует закрутку потока при входе на лопасти. Иногда в компрессорах имеет место радиальный (без закрутки) вход потока на лопасти (рис. 4.2), треугольник скоростей для такого случая изображен штриховыми линиями. Составляющая С характеризует энергию, передаваемую газу в рабочем колесе центробежного компрессора. Радиальные составляющие абсолютной скорости определяют объемный расход на входе в колесо и выходе из него.
Силовые поля потоков во вращающихся и неподвижных каналах различны.
Кроме сил, вызванных изменением величины и направления W, здесь возникает центробежная сила, вызываемая вращением в переносном движении и сила инерции, вызываемая кориолисовым ускорением. Следовательно, уравнение Бернулли в виде (4.6) в данном случае неприемлемо. К этому уравнению необходимо добавить члены, учитывающие упомянутое различие силового поля.
Равновесие сил, действующих на частицу идеального газа в направлении касательной к ее траектории s в относительном движении по принципу Даламбера, выражается уравнением,
где s — длина пути частицы; р — угол перемещения частицы в относительном движении.
Силы Кориолиса и силы, обусловленные давлением, в направлении оси п, а также сила, возникающая от поворота потока в относительном движении, направлены нормально к траектории и в условии равновесия не учитываются. Сила массы газа также не учитывается вследствие ее малости (рис. 4.1).
Как следует из уравнения Эйлера, теоретический напор колеса центробежного компрессора зависит от значений u и c (при с = 0).
Для обеспечения требуемого значения действительного напора Я приходится применять различные формы лопастей рабочего колеса, обеспечивающие различные значения С2и при заданной иг. Величина игСги изменяется в широких пределах. При расчете компрессоров проектант должен знать, какую долю составляет потенциальная энергия в общей энергии, передаваемой газу в рабочем колесе. Это отношение называют степенью реактивного р и при c = 0 определяют выражением.
Отношение и угол потока на выходе из рабочего колеса в значительной степени определяют значения H и р (рис. 4.3). С увеличением С возрастает величина H.
Для предельного случая рабочее колесо создает максимальный теоретический напор в форме динамического (р = 0). Соотношение С и р зависят от 0β2.
На рис. 4.3 изображены три возможные формы лопасти при одинаковых β1, D1, D2 и С2г и соответствующее распределение энергий, поКак следует из рис. 4.3, для получения более высоких значений Ят следует выбирать повышенные значения Сги/нг- Однако это допустимо в определенных пределах. При лопастях, загнутых вперед (тип 3), основная часть приращения энергии создается в виде кинетической энергии, что приводит к большим потерям в неподвижных каналах ступени, так как каналы рабочего колеса имеют неблагоприятную форму для потока. Все это снижает КПД компрессора. Кроме того, лопасти, загнутые вперед, имеют неблагоприятные акустические качества. Рабочие колеса с такими лопастями применяются в маломощных вентиляторах. Радиальные лопасти (тип 2) применяются в нагнетателях холодильных центробежных компрессоров. Лопасти, загнутые назад (тип 1), нашли широкое применение в многоступенчатых компрессорах большой мощности.
Формулы получены в предположении полной осевой симметрии потока газа в межлопастных каналах рабочего колеса, т.е. при постоянстве скоростей в выходном сечении на окружности диаметра. Это теоретически возможно при бесконечно большом количестве бесконечно тонких лопаток. При этом скорость совпадает с направлением касательной к лопасти. В этом случае суммарное приращение энергии в колесе получается простым суммированием по окружности энергий множества элементарных струек. Схема бесконечного числа лопастей была использована Эйлером и является исходным условием для приближенного определения Hт.
В действительности при конечном числе лопастей картина течения в межлопастных каналах имеет иной вид (см. рис. 4.1).
Согласно гипотезе поток в межлопастном канале можно получить путем сложения двух потоков: потока протекания и потока осевого вихря, интенсивности ω.
При сложении этих потоков (рис. 4. Г) относительная скорость на передней стороне лопасти уменьшается, a на тыльной увеличивается по сравнению со скоростью потока протекания. По уравнению Бернулли происходит изменение давления, что соответствует ранее рассмотренной картине.
В межлопастном канале на входе и выходе имеются окружные составляющие относительных скоростей.
Коэффициент р зависит от многих факторов. Несмотря на многочисленные попытки, не удалось до настоящего времени получить вполне строгое общее выражение для определения μ. Используют приближенные полузначения коэффициента р, колеблются в пределах среднестатической величины (л « 0,8.
С учетом неравномерности распределения скоростей на входе и выходе колеса полная удельная энергия (работа), переданная 1 кг массы газа, которая называется теоретическим -напором Нт, определяется выражением.
Следовательно, для определения удельной энергии, передаваемой потоку рабочим колесом, необходимо знать значения моментов скоростей (циркуляции) на входе и выходе лопастей. Величину моментов определяют экспериментально.
При рассмотрении течения газа во вращающейся круговой решетке за основу принята схема плоского (двухмерного) потока, который наиболее часто встречается в центробежных компрессорах. Если в межлопастных каналах рабочих колес имеет место пространственный (трехмерный) поток, то в этом случае приходится учитывать ряд дополнительных обстоятельств — вторичные течения, перетечки и др.
Одним из способов анализа пространственное™ потока является разбивка полости канала на ряд элементарных полостей, поверхностями вращения Ьимметричными оси колеса. В полученных элементарных полостях поток можно принимать плоским и использовать описанные выше методы.
Внутренний напор ступени многоступенчатого компрессора Я,- определяет собой полную энергию, сообщенную каждому 1 кг массы газа в ступени компрессора,
где Hт — теоретический напор лопастного колеса; Hд.т — потери напора на дисковое трение; Hд, — потери напора от утечек через уплотнения колеса (Hд. т и Hд, отнесены к 1 кг массы газа).
Потери Hд. т возникают из-за трения в слоях газа близ поверхности дисков рабочего колеса.
Потери в центробежном компрессоре происходят в основном через переднее уплотнение лопастного колеса, в осевом компрессоре — между бандажом колеса и корпусом компрессора (при наличии такового).
Потери взаимно влияют друг на друга, поэтому их разделение весьма условно. (В осевых компрессорах рассмотренные выше потери незначительны, поэтому на практике ими пренебрегают)
В центробежных компрессорах применяют коэффициент закрутки потока.
Коэффициент зависит от числа лопаток и выходного угла лопаток колеса. Суммарный коэффициент, учитывающий относительные потери изменяется в пределах 1,2 ÷ 1,5.
Течение газа в пространственных решетках рабочих колес и направляющих аппаратов имеет сложный характер. В теории и расчетах осевых компрессоров используются плоские решетки профилей, которые получаются сечением пространственных решеток рядом соосных цилиндрических поверхностей произвольного радиуса и разверткой полученных сечений на плоскость.
В результате получают плоскую решетку профилей, расположенных на одинаковом расстоянии друг от друга. При ориентировочном рассмотрении течения газа в плоской решетке осевого компрессора (плоский поток) радиальной составляющей скорости газа и взаимным влиянием профилей пренебрегают.
На рис. 4.4,а показана плоская решетка профилей, а на рис. 4.4,б — отдельный профиль. Средняя (скелетная) линия профиля — это кривая линия, разделяющая на равные части расстояние между выпуклой и вогнутой кромкой профиля, измеренное по нормали к этой линии. Среднюю линию можно построить вписанием окружностей в тело профиля. Хордой профиля называют линию, соединяющую крайние точки средней линии. За толщину профиля принимают расстояние между выпуклой и вогнутой кромками профиля, измеренное нормально к хорде, либо расстояние, измеренное нормально к средней линии профиля (т. е. диаметры вписанных окружностей). Кривизна профиля характеризуется углом Ф = θ1 + θ2, где углы θ1 и θ2 — углы между хордой и касательными к средней линии на входё и выходе профиля. Входная и выходная кромки профиля закругляются радиусами r1 и г2.
Все размеры, характеризующие профиль, могут быть представлены как относительные величины путем деления их на длину хорды.
Плоская решетка профилей характеризуется следующими величинами. Шаг решетки это расстояние между соседними профилями, измеренное по соответственным точкам профилей.
Относительный шаг решетки — это отношение шага решетки к длине хорды, т.е. который характеризует густоту решетки.
Ширина решетки — это размер решетки, параллельно оси вала компрессора. Геометрические углы входа и выхода лопастей решетки — это углы между касательными к средней линии профиля на входе и выходе и направлением оси решетки.
Угол установки профиля в решетке — это угол между хордой профиля и осью решетки. Кривизну профиля можно выразить через углы.
Поток газа, обтекающий решетку профилей, характеризуется входным углом β1 и выходным углом β2- Входной угол β1 — это угол между направлением относительной скорости на входе решетки и осью решетки. Выходной угол β2— это угол между направлением относительной скорости на выходе решетки и осью решетки. Разница между углами β2 и β1 называется углом закрутки потока. Угол атаки на входе решетки i—это угол между касательной к средней линии на входе профиля и относительной скоростью.
Угол отставания потока — это угол между касательной к средней линии на выходе профиля и относительной скоростью.
При обтекании профиля плоским потоком идеального газа со скоростью вследствие разных давлений на выпуклой и вогнутой сторонах профиля возникает подъемная сила. Подъемная сила перпендикулярна скоростии согласно теореме Жуковского для несжимаемой жидкости определяется на единицу длины профиля уравнением.
Теорема Жуковского действительна и для решетки профилей, если вместо скорости невозмущенного потока в уравнение ввести среднегеометрическую скорость.
В осевых компрессорах применяются в основном диффузорные решетки, увеличивающие давление газового потока за счет понижения относительной скорости W.
Давление, развиваемое решеткой, работающей на реальном газе, отличается от давления, получаемого в ней прих идеальном газе при прочих равных условиях. Причиной этого является в основном газовое сопротивление межлопастных каналов, требующее для его преодоления определенных затрат энергии. Рассматривая идеальное и реальное течения при одинаковом расходе через решетку, т.е. при одинаковых скоростях на входе и выходе, перепад давлений в реальном потоке отличается от перепада давлений идеального потока, так как в реальном потоке часть перепада расходуется на гидравлические потери.
Рассмотрим работу ступени осевого компрессора, состоящей из решеток вращающегося рабочего колеса и неподвижного направляющего аппарата (4.6,а). Сечением решеток ступени соосной цилиндрической поверхностью произвольного радиуса и разверткой получаем плоскую решетку профилей рабочего колеса и направляющего аппарата.
Считая радиальную составляющую скорости незначительной и пренебрегая ее влиянием, получаем равенство меридиональной и осевой составляющей скорости. Плоская решетка рабочего колеса движется с переносной скоростью и = const. Так как с — абсолютная скорость газа перед решеткой рабочего колеса, построив вектор переносной скорости и, получаем вектор относительной скорости с которой газ поступает на вращающуюся решетку колеса. Скорости образуют так называемый входной треугольник скоростей перед решеткой.
Так как W2 — относительная скорость газа на выходе решетки, добавив к ней вектор переносной скорости u1 получаем абсолютную скорость с2 на выходе из решетки. Скорости с2, и, W2 образуют так называемый выходной треугольник скоростей за решеткой.
На входе и выходе решетки рабочего колеса осевые составляющие скорости соответственно сг\ и сг2. В осевых компрессорах осевая скорость с обычно постоянна либо несколько уменьшается от первой к последней ступени.
На рис. 4.6,б, в показаны совместно скоростные треугольники на входе и выходе решетки рабочего колеса. Здесь же показана среднегеометрическая скорость
Поток газа поступает на решетку направляющего аппарата со скоростью С2 и покидает решетку со скоростью С3, несколько меньшей С2 из-за диффузорного эффекта.
Теоретический напор осевого компрессора представляет собой энергию, передаваемую лопатками рабочего колеса каждому 1 кг газа, проходящему через него.
Сообщение энергии материальной системе, в том числе газу, возможно только в процессе движения приложением внешней силы. Такой силой для потока газа в межлопастных каналах решетки является подъемная сила, вычисленная по формуле Жуковского.
Для существования такой силы должна иметь место разность давлений на передней и тыльной сторонах лопасти. Если обозначить через давление в середине канала на радиусе, то должно выполняться условие. В результате обтекания газовым потоком лопасти и образования перепада давления на передней и тыльной сторонах лопатки образуется циркуляционный поток. Суммарная циркуляция лопаток равна разности циркуляций на входе в колесо и выходе из него.
Теоретический напор можно выразить через циркуляцию скорости профиля решетки.
В осевых компрессорах степень реактивности обычно лежит в пределах 0,5 ÷ 1,0. При р < 1,0 только часть теоретического напора преобразуется в потенциальный в рабочем колесе, остальная часть преобразуется в направляющем аппарате.
В зависимости от степени реактивности рассмотрим следующие схемы ступени.
1. Ступень с р = 0,5 и С = С3 = С2.
В этом случае треугольники скоростей входа и выхода рабочего колеса симметричны, т. е. β1 = α2 и β2 = α1 (рис. 4.7,а). Очевидно, такая схема характеризуется предварительной закруткой потока перед рабочим колесом в сторону вращения.
На рис. 4.7,6 показаны решетки и треугольники скоростей ступени в случае 0 < си2 < u:
Рассмотренный тип ступени чаще всего применяется при р = 0,5 ÷ 0,8 для умеренных значений периферийных скоростей лопаток колес (u — ÷ 250 м/с). При этом допустимые значения числа Маха (М < 0,85 ÷ 0,9) ^ Для указанного типа ступени по высоте лопатки применяется закон си2 = const, при этом осевая скорость по высоте лопатки остается постоянной, а степень реактивности растет от ступицы до периферии лопатки. Рассмотренный тип ступени часто применяется в стационарных компрессорах.
3. Ступень со степенью реактивности р и C. Весь напор ступени создается в виде потенциального в рабочем колесе. Это возможно при предварительной закрутке потока на входе в рабочее колесо в сторону, противоположную вращению.
Направляющий аппарат изменяет только направление скорости, не изменяя ее величины. Указанный тип ступени целесообразно применять при малых значениях периферийных скоростей (u = 160 ÷ 220 м/с). Расчет ведется обычно с использованием закона сur = const по высоте лопатки колеса. Этот тип ступени применяется в стационарных компрессорах.
Для увеличения степени повышения давления в ступени компрессора е необходимо повышать значения окружной скорости колеса. При этом возрастают значения абсолютной с и относительной W скоростей в проточной части, прежде всего в рабочем колесе.
В современных компрессорах, в первую очередь , осевых, значения местных относительных скоростей близки или превышают значения скорости звука а в сжимаемой среде. В таких случаях возникают дополнительные явления в потоке газа, связанные с изменением параметров р, р, Т.
При увеличении скорости натекания на профиль вначале имеет место подобное изменение местных скоростей во всех точках обтекаемого профиля. При дальнейшем повышении Woo из-за увеличения местных скоростей в некоторых точках происходит уменьшение плотности газа. Для сохранения постоянным массового расхода в этом месте должно произойти дополнительное повышение W*. Если значения W* достигают значения а, то существенно изменяются распределение скоростей по профилю, подъемная сила, лобовое сопротивление профиля и т. п. Критерием повышения местных скоростей служит число Маха, где а — скорость звука в данной среде, м/с.
При критическом значении М > 1 происходит скачкообразное изменение параметров потока. Обратный переход от сверхзвуковых к дозвуковым значениям скоростей нельзя осуществить плавно. При переходе скорости звука в рабочей среде имеет место скачкообразное изменение параметров потока р, р и Т. Такой процесс называют скачком уплотнения (стоячей ударной волной). Скачок уплотнения сопровождается сильными акустическими явлениями (подобными преодолению звукового барьера самолетом).
При скачке уплотнения происходит резкое снижение КПД компрессора (подобно снижению КПД при кавитации в насосе). Снижение КПД в значительной степени вызвано увеличением сопротивления при обтекании профиля из-за интенсивного отрыва пограничного слоя при скачке уплотнения. При скачках уплотнения происходит необратимое преобразование кинетической энергии газа в теплоту, возникает свойственное только сверхзвуковым потокам волновое сопротивление.
На рис. 4.8 показана качественная картина дозвукового и сверхзвукового обтекания профиля.
Опасность возникновения скачка уплотнений в центробежных компрессорах относительно меньше.
Стационарные компрессоры рекомендуется выполнять при максимальных значениях числа Маха М < 0,75 ÷ 0,85. КПД дозвуковых компрессоров выше, чем сверхзвуковых, но габариты последних меньше. При этом в осевых компрессорах следует применять лопатки минимальной толщины, а угол установки лопаток рабочего колеса центробежного компрессора на входе β1 < 35°.
Наиболее опасной зоной возникновения скачка уплотнений в осевых компрессорах является вход на лопатки рабочего колеса; в центробежных компрессорах — входные элементы лопаток диффузора или язык спирали.
В многоступенчатых компрессорах наиболее опасной с точки зрения достижений скорости звука является первая ступень. Число М оказывает влияние на выбор оптимального значения угла раскрытия диффузора ε'. Для М > 0,75 можно принять
ε' = (1 — М2)ε,
где ε ≈ 8° — оптимальный угол раскрытия диффузора для несжимаемого газа.
Лопастные компрессоры относятся к классу динамических машин. Явления, происходящие в потоке газа в проточной части, должны подчиняться общим законам динамического подобия. Поток газа в проточной части компрессора движется с высокими скоростями и, следовательно, с высокой степенью турбулентности (в квадратичной зоне режимов течения). В связи с этим условия динамического подобия течения могут выполняться, если обеспечить прежде всего требования геометрического и кинематического подобия.
Компрессоры обычно создаются сериями с геометрически подобной формой проточной части, и рабочие параметры их подчиняются основным законам подобия.
При изучении подобия газодинамических процессов в лопастных компрессорах рассматриваются следующие безразмерные критерии:
К этим четырем критериям следует добавить показатель адиабаты k. Однако выполнение равенства всех критериев подобия для двух геометрически подобных потоков невозможно.
Например, равенство чисел Re и М возможно лишь в случае, если рассматриваемые системы каналов не только подобны, но и равны по размерам. Для газовых потоков с разными показателями адиабаты невозможно сочетать геометрическое и кинематическое подобие во всех сходственных сечениях двух лопастных компрессоров. Поэтому применяется приближенное подобие, допускающее нарушение таких критериев подобия, которые в данном конкретном случае не являются определяющими.
В неохлаждаемых группах ступеней компрессорных машин процессы теплопередачи существенного значения не имеют, поэтому критерии Прандтля и Нуссельта в этих случаях можно не учитывать. Число Re оказывает влияние на характер течения.
В пределах значений М < 0,8 можно также пренебречь условием равенства критерия М. Таким образом, для лопастных компрессоров условия подобия практически соблюдаются при:
Необходимо отметить, что число Рr для газов с одинаковыми к (равной атомности) практически одинаковы.
В проточной части компрессора аналитическое определение основных технических характеристик с использованием методов газодинамики довольно сложно. Поэтому если известны характеристики проточной части какого-то компрессора или его ступени (обозначим индексом м), то при выполнении условий подобия можно определить характеристики разрабатываемого компрессора (индекс н).
Масштаб геометрического подобия (коэффициент пересчета)
При широком диапазоне изменения значений Хы и т обеспечить точное соблюдение условий подобия трудно.
В качестве критерия подобия в компрессоростроении используют также коэффициент быстроходности, об/мин.
Под коэффициентом быстроходности подразумевается частота вращения ступени эталонного компрессора (геометрически подобного проектируемому), который, работая на аналогичном газе при производительности VM = 1 м³/с, создает напор Ям = 1 м.
В многоступенчатых компрессорах значение пул меняется из-за изменения объемной производительности по ступеням.
Ступени с равным нуд имеют одинаковые характерные геометрические и кинематические соотношения проточной части и одинаковую безразмерную характеристику. Создаваемые серии компрессоров обычно имеют проточную часть с одинаковым Пуд.
Для энергетической и размерной характеристик ступеней используются безразмерные коэффициенты, которые также зависят от пуд. К ним относятся:
Коэффициенты определяют пропускную способность, энергоемкость и размеры сечений проточной части серии подобных ступеней и используются для построения безразмерной характеристики для серий подобных машин.
Значения коэффициента ср изменяются в пределах:
Приняв соответствующие значения φ и имея заданные параметры V, Н и n, можно определить ориентировочно габаритный размер рабочего колеса и требуемое значение u2. По выбранным значениям входной скорости в рабочее колесо (обычно с = 20 ÷ 100 м/с) и коэффициенту φ можно оценить диаметр D0 входной воронки рабочего колеса.
Таким образом, n, φ и ψ служат исходными величинами для определения размеров элементов проточной части центробежного компрессора на заданные параметры.